Constructions and Properties of the Heighway Dragon Curve
Formalized in Agda

Ting-Wu Chang

Abstract

The Heighway dragon curve is generated by iteratively applying transformation to a unit
line segment. Two constructions of the dragon curve—the “unfolding” and “expansion” con-
structions—are proved equivalent in Agda. Additionally, we outline a proof for the property
that the dragon curve never overlaps itself.

Introduction The Heighway dragon curve is a fractal curve constructed by iteratively applying a
sequence of transformations to a unit line segment. Here, two types of transformations—unfolding
and expansion [1, p. 3] —that can be used to form a construction are introduced and formalized.

Unfolding The “unfolding” construction of the dragon curve starts from a unit line segment
with start and end points. We repeatedly 1. make a copy of the curve, 2. rotate the copy 90 degrees
clockwise (R) or counterclockwise (L), 3. connect the two curves at the end points, and 4. make
the starting point of the copy the new end point for the whole curve, as demonstrated in Fig. 1.

This informal construction can be formalized by introducing a language consisting of lists of the
letters + and —. Each list provides instructions for drawing a curve. For —, we turn the drawing
direction 90 degrees clockwise, while + turns it counterclockwise. At the beginning and after each
letter, we draw a unit line segment in the current direction. With this language, dragon curves can
be generated by a recursive function, dragonU, that operates on a list of “operations” R and L:

dragonU : List Op - List Letter
dragonU [] = [
dragonU (op :: ops) = dragonU ops ++ choose op :: invert (reverse (dragonU ops))

where choose is a function that maps R to 4+ and L to —, and invert swaps + and — [2].

The function represents the unfolding construction since, when a copy of the curve is made and
rotated, the drawing order of the copy is reversed, and each turn is inverted. The turn between the
original curve and the copy is determined by the operation at that iteration, which is realized with
choose. For instance, dragonU [L, R, R] outputs [+, +, -, -, +, -, -], which is dragonU
[R, R] ++ choose L :: invert (reverse (dragonU [R, R])) and corresponds to Fig. 1.

— <\
Endl RI : l ] — 4 — T* - </\
Start L \ T v
Figure 1: The unfolding construction Figure 2: The expansion construction



Expansion The “expansion” construction starts with a line segment with a direction. At each
iteration, each segment is expanded to its right (R) or left (L), creating two new segments. The
three form a 45-45-90 triangle with the original segment being the hypotenuse, and the directions
of the new segments facing each other, as demonstrated in Fig. 2.

The expansion construction can also be formalized by a recursive function that generates draw-
ing instructions. More specifically, it can be described using an L-system, a type of system that
iteratively replaces each letter in a list with a predefined sequence of letters. First, we extend the
alphabet with X and Y. Then, we define the rules of the L-system: for R, the rules are X — X +Y
and Y — X — Y, and for L, the rules are X — X —Y and Y — X + Y (list notation omitted).
Finally, we can define dragonE that takes an initial list and a list of operations.

dragonE : List Letter - List Op - List Letter
dragonE seed [] = seed
dragonE seed (op :: ops) = l-help op (dragonE seed ops)

where 1-help implements the L-system [3, p. 11]. To interpret the output of dragonE, we can
simply ignore the X and Y as they only serve the purpose of discriminating the direction of lines.
dragonE [X] represents the expansion construction because the alternating appearance of X
and Y in the list corresponds to the alternating directions of segments in the curve. The direction
of the segment determines whether a left or right turn will appear, similar to how X and Y
determine the addition of + and — after expansion. For instance, dragonE [X] [R, R, L] outputs
X+Y+X-Y-X+Y-X-Y, which is expanded from X+Y-X-Y under R. This corresponds to Fig. 2.

Construction Equivalence One property of the dragon curve is that when given the same
sequence of operations, only in reverse order, the two constructions generate the same curve (as
shown in Fig. 1 and 2). In Agda, we can express this theorem as follows:

E[X]=U : V (ops : List Op) - strip (dragonE [X] (reverse ops)) = dragonU ops

where strip removes all X and Y. This theorem is proven by decomposing both sides and showing
the equivalence on each component inductively. A complementary theorem describing the relation
between dragonE [Y] and dragonU is used and proven together through mutual induction.

Non-Overlapping Property (NOP) Another property of the dragon curve is that, regardless
of the sequence of operations, the generated curve never overlaps itself, formalized as follows:

no-overlap-in-dragonG : V {cur : Curve} - DragonG cur - Non-OL-Curve cur

Here, Curve is defined as List Seg (a list of segments) on an integer coordinate plane, where
each segment has its start and end points. DragonG uses the expansion construction to inductively
construct the dragon curve as a Curve, while Non-0OL-Curve requires proof that no two segments in
the curve overlap each other. We attempt to follow the proof of this property mentioned in Ryde’s
work [1, p. 4] by defining a Pattern predicate on Seg. By showing that curves whose segments
all follow the pattern preserve the NOP and that the dragon curve follows the pattern, we can
inductively prove the NOP of the dragon curve. However, the proof is still incomplete.

Future Work Future work includes completing the proof for the non-overlapping property, gen-
eralizing the proof outline to include the NOPs of other fractal curves defined by L-systems or
expansion of line segments, or further exploration of the relationships between the language for
drawing instructions (dragonU, dragonE) and their graphical representations (DragonG).



References

[1] K. Ryde. Iterations of the Dragon Curve. Draft 23. 2021.

[2] S. Tabachnikov. “Dragon Curves Revisited”. In: The Mathematical Intelligencer 36.1 (2014),
pp- 13-17.

[3] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants. Springer-Verlag,
1990.

Proof Sketch

Construction Equivalence We prove the construction equivalence:

E[X]I=U : V (ops : List Op)
-+ strip (dragonE [X] (reverse ops)) = dragonU ops

inductively on the list of operations. For the base case, E[X]=U holds trivially. For the inductive
case, we first observe that the LHS strip (dragonE [X] (reverse (op :: ops))) can be decom-
posed into A ++ (choose op) :: B, where A is strip (dragonE [X] (reverse ops)) and B is
strip (dragonE [Y] (reverse ops)). We prove this decomposition by observing that dragonE,
when given a list of operations ops ::" op and an initial list [X], produces X :: (choose op)
[Y] after the first operation (the last item) is applied.

Similarly, the RHS dragonU (op :: ops) can also be decomposed into C ++ (choose op) ++
D, where C' is dragonC ops and D is invert (reverse (dragonC ops)) by definition.

A = C is trivial from the inductive hypothesis, while B = D requires another theorem:

E[Y]=U : V (ops : List Op)
-+ strip (dragonE [Y] (reverse ops)) = invert (reverse (dragonU ops))

E[Y]=U is similar to E[X]=U but is given [Y] instead of [X] as the initial list for dragonE. To
prove E[Y]=U, we take a similar approach to the proof of E[X]=U by decomposing both sides of
the equivalence and then showing the equivalence on each component. This process will, in turn,
make use of E[X]=U. In fact, E[X]=U and E[Y]=U are proven together through mutual induction.

Non-Overlapping Property We attempt to prove the NOP of dragon curves:
no-overlap-in-dragonG : V {curve} - DragonG curve - Non-OL-Curve curve

where DragongG is defined inductively using the expansion construction, and Non-0L-Curve is defined
as follows:

Non-0OL-Curve : Curve - Set
Non-0L-Curve cur = ¥V i j = i # j -+ - Overlap (lookup cur i) (lookup cur j)

where Overlap is a predicate of whether two segments start and end at the same points, regardless
of direction.

DragonG uses the expand-curve function to formalize the expansion construction. At each
iteration, it first performs a 45-degree rotation and a scaling by v/2 on the curve. It then expands
each segment in the curve to its left or right side according to the inputted operation, as shown
in Fig. 3. The purpose of the linear transformation before the expansion is to ensure that the



11
1 -1 L-expand

~— — —_— _

T /N Il |l

Figure 3: A curve expanded by the expand-curve function

endpoints of the segments remain integers. It is also proven that the transformation preserves the
similarity between the original and resulting curves.

With the definitions, we attempt to prove the NOP of the dragon curve by observing that all
the segments in the dragon curve seem to be in the form of

Pattern : Seg - Set
Pattern record {s = record {x = sx ; y = sy} ; e = record {x = ex ; y = ey}t}
= Even (sx + sy) x 0dd (ex + ey) x ((ex - sx) 2 + (ey - sy) 2 = 1)

If we can prove the following lemmas for this pattern:

pattern-preserve : V {cur} = V op
-+ All Pattern cur - All Pattern (expand-curve op cur)

NOC-preserve : V {cur} - V op
-+ Non-OL-Curve cur - All Pattern cur - Non-OL-Curve (expand-curve op cur)

dragon-on-pattern : V {cur} -+ DragonG cur - All Pattern cur

then the NOP can be proven inductively:
no-overlap-in-dragonG : V {cur} - DragonG cur - Non-OL-Curve cur

Among the lemmas, dragon-on-pattern can be proven with pattern-preserve trivially. How-
ever, the proofs for pattern-preserve and NOC-preserve are still incomplete.



