
Bridging Combinatorial and Algebraic proof: An Algebraic Approach
with Agda
Yu-Chuan YU

Advisor : Liang-Ting Chen

August 29, 2024

Abstract
In combinatorics, proving combinatorial identities often involves either double counting the same set or

constructing a bijection between two sets. In contrast, algebraic proofs typically rely on operations like addition
and multiplication on natural numbers or techniques such as calculus and generating functions. Our study
focuses on the relationship between these two proof methods. There is a corresponding relationship between
operations on natural numbers and sets, such as addition corresponding to disjoint union (⊎) and multiplication
corresponding to the Cartesian product (×). However, it is not trivial to define the size of a type in type theory.
To address this, we define the type ‘FinSet‘, which also incorporates specific lists as a medium. By defining the
size function EF : FinSet → N on ‘FinSet‘, we find that as long as the embedding properties are satisfied, this
ensures the correctness of the proof transformation.”
Keywords. Agda, Commutative ring, Combinatorial reasoning

e-mail: yuyuch0303@gmail.com

Introduction Combinatorial and algebraic proofs represent two distinct approaches to mathematical reasoning.
Combinatorial proofs often employ double counting or bijections, demonstrating equal set sizes or one-to-one cor-
respondences between sets. In contrast, algebraic proofs leverage operational properties and may involve complex
mathematical tools like calculus or generating functions. Consider the combinatorial identity:

n∑
k=1

k

(
n

k

)
= n · 2n−1.

This identity can be proved using both methods:
1. Combinatorial Proof: Count the ways to select a committee of any size and a chairperson from n people in two
ways: a) Select a committee of size k and its chairperson. b) Select a chairperson and the remaining committee
members.
2. Algebraic Proof: Differentiate the binomial theorem.

Comparison and Motivation The example in the introduction highlights key differences between combinatorial
and algebraic proof methods:

• Intuitiveness: Combinatorial proofs often provide more intuitive understanding, relying on counting prin-
ciples and set-based reasoning. This approach can make complex identities more accessible to a broader
audience.

• Formality: Algebraic proofs, while more formal, typically require extensive auxiliary lemmas and sophis-
ticated mathematical tools like calculus or generating functions. This formality can pose challenges when
implementing proofs in systems like Agda, especially for intricate combinatorial identities.

• Accessibility: The intuitive nature of combinatorial proofs can make them easier to grasp, particularly for
those less versed in advanced algebraic techniques.

yuyuch0303@gmail.com


Given these distinctions, our research focuses on:
1. Establishing the correctness of combinatorial proofs. Sn ≃ Sm → n ≡ m

2. Investigating the equivalence between these approaches. Sn ≃ Sm ↔ n ≡ m

3. Automate the process of transforming proofs.
By bridging the gap between combinatorial intuition and algebraic rigor, we aim to develop a unified framework that
leverages the strengths of both methods. This could potentially simplify the proof process for complex combinatorial
identities, especially in formal verification systems, while maintaining mathematical rigor.

Corresponding Operations between N, List, and Set
• _+_ corresponds to list append _++_ and disjoint union _ ⊎_.

• _ ∗_ corresponds to cartesianProduct and Cartesian product _×_.

FinSet In Agda, defining the cardinality function card : Set → N is challenging. To address this, we bind the
Carrier : Set to a specific list : List Carrier that satisfies two conditions:

1. enum: Every inhabitant of Carrier is a member of the list.

2. once: Every element in the list appears exactly once.
This allows us to define the cardinality function: EF = λ X → length list X
Additionally, we define a relation on FinSet: X ∼ Y = Carrier X ≃ Carrier Y

Embedding Embedding functions, denoted EF, are crucial for preserving the structure of operations during
transitions between domains. They ensure that operations and equivalence relations are preserved, maintaining
consistency across structures.

EF : FinSet → N
E+ : ∀ (X Y : FinSet) → EF (X +FS Y ) ≡ (EF X) + (EF Y )

E* : ∀ (X Y : FinSet) → EF (X ∗FS Y ) ≡ (EF X) ∗ (EF Y )

E ∼: ∀ (X Y : FinSet) → X ∼ Y → (EF X) ≡ (EF Y )

Given EF = λ X → length list X, this can be rewritten as:

E ∼: ∀ (X Y : FinSet) → Carrier X ≃ Carrier Y → (length list X) ≡ (length list Y )

This forms the foundation of verifying the correctness of combinatorial proofs.

Conclusion
• Abstraction Achievement: A promising proof system has been developed in Agda, demonstrating the

potential for abstraction in formal proof systems.

• Term Automation: Once fully implemented, Term automation is expected to significantly reduce the
complexity of proofs and improve readability within Agda. This advancement will make the proof-writing
process more accessible and efficient.

• Unfinished Work: Despite the progress made, there are still pending tasks, including the completion of
the FinSet multiplication proof and the inject-� lemma. Addressing these will be essential for the overall
integrity and functionality of the proof system.

Future Studies
• Additional Operations to Implement: Define more combinatorial operators, such as Σ, Π, _!, P , and C.

• Automatic Proof Generation Using Data Term: Develop a data type that logs the structure of operators
to enable automatic transformation of proofs.

• Term Reasoning: Create an environment in Agda that facilitates writing more complex combinatorial
proofs.

2



For more details, refer to the project on GitHub: https://github.com/yych0303/2024-IIS-summer-intern/tree/
main.

References
[1] FRUMIN, Dan, et al. ”Finite sets in homotopy type theory.” *Proceedings of the 7th ACM SIGPLAN Inter-

national Conference on Certified Programs and Proofs*. 2018. pp. 201-214.

[2] EDMONDS, Chelsea. *Formalising Combinatorial Structures and Proof Techniques in Isabelle/HOL*. 2024.
PhD Thesis.

[3] RIJKE, Egbert; SPITTERS, Bas. ”Sets in homotopy type theory.” *Mathematical Structures in Computer
Science*. 2015, 25(5): 1172-1202.

[4] The Univalent Foundations Program. *Homotopy Type Theory: Univalent Foundations of Mathematics*. arXiv
preprint arXiv:1308.0729, 2013.

Examples of Transforming Proofs The following examples utilize the Embedding structure, specifically focus-
ing on the preservation of operations and equivalence relations through E+, E*, E∼, and EFF. These transformations
are used to demonstrate the commutativity of addition n + m ≡ m + n and the associativity of multiplication
n× (m× l) ≡ (n×m)× l by analyzing the operations within the embedded structure.

Here, EFF is defined as:

EFF : ∀(n : N) → EF (F n) ≡ n

where F is a function that maps n to a FinSet of size n.

(a) Commutativity of Addition (b) Associativity of Multiplication

Figure 1: Proof by framework without automation

3

https://github.com/yych0303/2024-IIS-summer-intern/tree/main
https://github.com/yych0303/2024-IIS-summer-intern/tree/main

