Chen, Liang-Ting 陳亮廷

Postdoctoral Researcher
Institute of Information Science, Academia Sinica
No. 128, Sec. 2, Academia Rd.
Taipei 115201, Taiwan

Interests

My research interests include, but are not limited to,

In general I find the categorical perspective of theory B interesting to me.

Academic services

Publications

[1] L.-T. Chen, H.-S. Ko, Realising intensional S4 and GL modalities, in: 30th EACSL Annual Conference on Computer Science Logic (CSL’22), 2022.

[2] J. Adámek, L.-T. Chen, S. Milius, H. Urbat, Reiterman’s theorem on finite algebras for a monad, ACM Transactions on Computational Logic. 22 (2021) 1–48. doi:10.1145/3464691.

[3] L.-T. Chen, M. Roggenbach, J.V. Tucker, An Algebraic Theory for Data Linkage, in: I. Fiadeiro, José Luiz and Ţuţu (Ed.), 24th IFIP WG 1.3 International Workshop on Algebraic Development Techniques (WADT’18), Springer, 2019: pp. 47–66. doi:10.1007/978-3-030-23220-7_3.

[4] H. Urbat, J. Adámek, L.-T. Chen, S. Milius, Eilenberg Theorems for Free, in: K.G. Larsen, H.L. Bodlaender, J.-F. Raskin (Eds.), 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS’17), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017: pp. 43:1–43:15. doi:10.4230/LIPIcs.MFCS.2017.43.

[5] L.-T. Chen, H. Urbat, Schützenberger products in a category, in: S. Brlek, C. Reutenauer (Eds.), 20th International Conference on Developments in Language Theory (DLT’16), Springer Berlin Heidelberg, 2016: pp. 89–101. doi:10.1007/978-3-662-53132-7.

[6] L.-T. Chen, J. Adámek, S. Milius, H. Urbat, Profinite monads, profinite equations, and Reiterman’s theorem, in: B. Jacobs, C. Löding (Eds.), 19th International Conference on the Foundations of Software Sciences and Computer Structures (FoSSaCS’15), Springer Berlin Heidelberg, 2016: pp. 531–547. doi:10.1007/978-3-662-49630-5_31.

[7] L.-T. Chen, H. Urbat, A fibrational approach to automata theory, in: L.S. Moss, P. Sobocinski (Eds.), 6th Conference on Algebra and Coalgebra in Computer Science (CALCO’15), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015: pp. 50–65. doi:10.4230/LIPIcs.CALCO.2015.50.

[8] L.-T. Chen, A. Jung, On a categorical framework for coalgebraic modal logic, in: 30th Conference on the Mathematical Foundations of Programming Semantics (MFPS’14), Elsevier, 2014: pp. 109–128. doi:10.1016/j.entcs.2014.10.007.