Chen, Liang-Ting 陳亮廷

Postdoctoral Researcher
Institute of Information Science, Academia Sinica
No. 128, Sec. 2, Academia Rd.
Taipei 115201, Taiwan


My research interests include, but are not limited to,

In general I find the categorical perspective of theory B interesting to me.

Academic services


[1] L.-T. Chen, H.-S. Ko, Realising intensional S4 and GL modalities, in: 30th EACSL Annual Conference on Computer Science Logic (CSL’22), 2022.

[2] J. Adámek, L.-T. Chen, S. Milius, H. Urbat, Reiterman’s theorem on finite algebras for a monad, ACM Transactions on Computational Logic. 22 (2021) 1–48. doi:10.1145/3464691.

[3] L.-T. Chen, M. Roggenbach, J.V. Tucker, An Algebraic Theory for Data Linkage, in: I. Fiadeiro, José Luiz and Ţuţu (Ed.), 24th IFIP WG 1.3 International Workshop on Algebraic Development Techniques (WADT’18), Springer, 2019: pp. 47–66. doi:10.1007/978-3-030-23220-7_3.

[4] H. Urbat, J. Adámek, L.-T. Chen, S. Milius, Eilenberg Theorems for Free, in: K.G. Larsen, H.L. Bodlaender, J.-F. Raskin (Eds.), 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS’17), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017: pp. 43:1–43:15. doi:10.4230/LIPIcs.MFCS.2017.43.

[5] L.-T. Chen, H. Urbat, Schützenberger products in a category, in: S. Brlek, C. Reutenauer (Eds.), 20th International Conference on Developments in Language Theory (DLT’16), Springer Berlin Heidelberg, 2016: pp. 89–101. doi:10.1007/978-3-662-53132-7.

[6] L.-T. Chen, J. Adámek, S. Milius, H. Urbat, Profinite monads, profinite equations, and Reiterman’s theorem, in: B. Jacobs, C. Löding (Eds.), 19th International Conference on the Foundations of Software Sciences and Computer Structures (FoSSaCS’15), Springer Berlin Heidelberg, 2016: pp. 531–547. doi:10.1007/978-3-662-49630-5_31.

[7] L.-T. Chen, H. Urbat, A fibrational approach to automata theory, in: L.S. Moss, P. Sobocinski (Eds.), 6th Conference on Algebra and Coalgebra in Computer Science (CALCO’15), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015: pp. 50–65. doi:10.4230/LIPIcs.CALCO.2015.50.

[8] L.-T. Chen, A. Jung, On a categorical framework for coalgebraic modal logic, in: 30th Conference on the Mathematical Foundations of Programming Semantics (MFPS’14), Elsevier, 2014: pp. 109–128. doi:10.1016/j.entcs.2014.10.007.