------------------------------------------------------------------------
-- The Agda standard library
--
-- Any predicate transformer for fresh lists
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Data.List.Fresh.Relation.Unary.Any where

open import Level using (Level; _⊔_; Lift)
open import Data.Empty
open import Data.Product.Base using (; _,_; -,_)
open import Data.Sum.Base using (_⊎_; [_,_]′; inj₁; inj₂)
open import Function.Bundles using (_⇔_; mk⇔)
open import Relation.Nullary.Negation using (¬_)
open import Relation.Nullary.Decidable as Dec using (Dec; yes; no; _⊎-dec_)
open import Relation.Unary  as U
open import Relation.Binary.Core using (Rel)

open import Data.List.Fresh using (List#; []; cons; _∷#_; _#_)

private
  variable
    a p q r : Level
    A : Set a

module _ {A : Set a} {R : Rel A r} (P : Pred A p) where

  data Any : List# A R  Set (p  a  r) where
    here  :  {x xs pr}  P x  Any (cons x xs pr)
    there :  {x xs pr}  Any xs  Any (cons x xs pr)

module _ {R : Rel A r} {P : Pred A p} {x} {xs : List# A R} {pr} where

  head : ¬ Any P xs  Any P (cons x xs pr)  P x
  head ¬tail (here p)   = p
  head ¬tail (there ps) = ⊥-elim (¬tail ps)

  tail : ¬ P x  Any P (cons x xs pr)  Any P xs
  tail ¬head (here p)   = ⊥-elim (¬head p)
  tail ¬head (there ps) = ps

  toSum : Any P (cons x xs pr)  P x  Any P xs
  toSum (here p) = inj₁ p
  toSum (there ps) = inj₂ ps

  fromSum : P x  Any P xs  Any P (cons x xs pr)
  fromSum = [ here , there ]′

  ⊎⇔Any : (P x  Any P xs)  Any P (cons x xs pr)
  ⊎⇔Any = mk⇔ fromSum toSum

module _ {R : Rel A r} {P : Pred A p} {Q : Pred A q} where

  map : {xs : List# A R}  ∀[ P  Q ]  Any P xs  Any Q xs
  map p⇒q (here p)  = here (p⇒q p)
  map p⇒q (there p) = there (map p⇒q p)

module _ {R : Rel A r} {P : Pred A p} where

  witness : {xs : List# A R}  Any P xs   P
  witness (here p)   = -, p
  witness (there ps) = witness ps

  remove   : (xs : List# A R)  Any P xs  List# A R
  remove-# :  {x} {xs : List# A R} p  x # xs  x # (remove xs p)

  remove (_ ∷# xs)      (here _)  = xs
  remove (cons x xs pr) (there k) = cons x (remove xs k) (remove-# k pr)

  remove-# (here x)  (p , ps) = ps
  remove-# (there k) (p , ps) = p , remove-# k ps

infixl 4 _─_
_─_ = remove

module _ {R : Rel A r} {P : Pred A p} (P? : Decidable P) where

  any? : (xs : List# A R)  Dec (Any P xs)
  any? []        = no  ())
  any? (x ∷# xs) = Dec.map ⊎⇔Any (P? x ⊎-dec any? xs)