{-# OPTIONS --cubical-compatible --safe #-}
module Data.String.Properties where
open import Data.Bool.Base using (Bool)
import Data.Char.Properties as Charₚ
import Data.List.Properties as Listₚ
import Data.List.Relation.Binary.Pointwise as Pointwise
import Data.List.Relation.Binary.Lex.Strict as StrictLex
open import Data.String.Base
open import Function.Base
open import Relation.Nullary.Decidable using (yes; no)
open import Relation.Nullary.Decidable using (map′; isYes)
open import Relation.Binary.Core using (_⇒_)
open import Relation.Binary.Bundles
using (Setoid; DecSetoid; StrictPartialOrder; StrictTotalOrder; DecTotalOrder; DecPoset)
open import Relation.Binary.Structures
using (IsEquivalence; IsDecEquivalence; IsStrictPartialOrder; IsStrictTotalOrder; IsDecPartialOrder; IsDecTotalOrder)
open import Relation.Binary.Definitions
using (Reflexive; Symmetric; Transitive; Substitutive; Decidable)
open import Relation.Binary.PropositionalEquality.Core
import Relation.Binary.Construct.On as On
import Relation.Binary.PropositionalEquality.Properties as PropEq
open import Agda.Builtin.String.Properties public
renaming ( primStringToListInjective to toList-injective)
≈⇒≡ : _≈_ ⇒ _≡_
≈⇒≡ = toList-injective _ _
∘ Pointwise.Pointwise-≡⇒≡
≈-reflexive : _≡_ ⇒ _≈_
≈-reflexive = Pointwise.≡⇒Pointwise-≡
∘ cong toList
≈-refl : Reflexive _≈_
≈-refl {x} = ≈-reflexive {x} {x} refl
≈-sym : Symmetric _≈_
≈-sym = Pointwise.symmetric sym
≈-trans : Transitive _≈_
≈-trans = Pointwise.transitive trans
≈-subst : ∀ {ℓ} → Substitutive _≈_ ℓ
≈-subst P x≈y p = subst P (≈⇒≡ x≈y) p
infix 4 _≈?_
_≈?_ : Decidable _≈_
x ≈? y = Pointwise.decidable Charₚ._≟_ (toList x) (toList y)
≈-isEquivalence : IsEquivalence _≈_
≈-isEquivalence = record
{ refl = λ {i} → ≈-refl {i}
; sym = λ {i j} → ≈-sym {i} {j}
; trans = λ {i j k} → ≈-trans {i} {j} {k}
}
≈-setoid : Setoid _ _
≈-setoid = record
{ isEquivalence = ≈-isEquivalence
}
≈-isDecEquivalence : IsDecEquivalence _≈_
≈-isDecEquivalence = record
{ isEquivalence = ≈-isEquivalence
; _≟_ = _≈?_
}
≈-decSetoid : DecSetoid _ _
≈-decSetoid = record
{ isDecEquivalence = ≈-isDecEquivalence
}
infix 4 _≟_
_≟_ : Decidable _≡_
x ≟ y = map′ ≈⇒≡ ≈-reflexive $ x ≈? y
≡-setoid : Setoid _ _
≡-setoid = PropEq.setoid String
≡-decSetoid : DecSetoid _ _
≡-decSetoid = PropEq.decSetoid _≟_
infix 4 _<?_
_<?_ : Decidable _<_
x <? y = StrictLex.<-decidable Charₚ._≟_ Charₚ._<?_ (toList x) (toList y)
<-isStrictPartialOrder-≈ : IsStrictPartialOrder _≈_ _<_
<-isStrictPartialOrder-≈ =
On.isStrictPartialOrder
toList
(StrictLex.<-isStrictPartialOrder Charₚ.<-isStrictPartialOrder)
<-isStrictTotalOrder-≈ : IsStrictTotalOrder _≈_ _<_
<-isStrictTotalOrder-≈ =
On.isStrictTotalOrder
toList
(StrictLex.<-isStrictTotalOrder Charₚ.<-isStrictTotalOrder)
<-strictPartialOrder-≈ : StrictPartialOrder _ _ _
<-strictPartialOrder-≈ =
On.strictPartialOrder
(StrictLex.<-strictPartialOrder Charₚ.<-strictPartialOrder)
toList
<-strictTotalOrder-≈ : StrictTotalOrder _ _ _
<-strictTotalOrder-≈ =
On.strictTotalOrder
(StrictLex.<-strictTotalOrder Charₚ.<-strictTotalOrder)
toList
≤-isDecPartialOrder-≈ : IsDecPartialOrder _≈_ _≤_
≤-isDecPartialOrder-≈ =
On.isDecPartialOrder
toList
(StrictLex.≤-isDecPartialOrder Charₚ.<-isStrictTotalOrder)
≤-isDecTotalOrder-≈ : IsDecTotalOrder _≈_ _≤_
≤-isDecTotalOrder-≈ =
On.isDecTotalOrder
toList
(StrictLex.≤-isDecTotalOrder Charₚ.<-isStrictTotalOrder)
≤-decTotalOrder-≈ : DecTotalOrder _ _ _
≤-decTotalOrder-≈ =
On.decTotalOrder
(StrictLex.≤-decTotalOrder Charₚ.<-strictTotalOrder)
toList
≤-decPoset-≈ : DecPoset _ _ _
≤-decPoset-≈ =
On.decPoset
(StrictLex.≤-decPoset Charₚ.<-strictTotalOrder)
toList
infix 4 _==_
_==_ : String → String → Bool
s₁ == s₂ = isYes (s₁ ≟ s₂)
private
data P : (String → Bool) → Set where
p : (c : String) → P (_==_ c)
unit-test : P (_==_ "")
unit-test = p _